Numerical
computation in C++

Fast numerical computation in C++:
Expression Templates and Beyond to
Lazy Code Generation (LzCGQ)

B. Nikolic

Cavendish Laboratory/Kavli Institute
University of Cambridge

BoostCon 2011
May 2011

Overview of ideas SN,

1. ‘Standard’ rules of C++ lead to inefficient numerical
code

2. New rules (= sub-languages) can be implemented
using expression templates
2.1 Types are used confer information about expressions
2.2 Translated to ‘standard’ C++ at compile-time

3. Makes high-performance numerical C++ libraries
possible and successful

4. Butis it enough?
4.1 Most efficient algorithm not obvious at compile-time
4.2 Convenience/flexibility of generating code in C++

5. Types retain information about expressions in
signatures in object code

5.1 Can re-generate expression template
implementations post-compilation-time

Introduction

Numerical algorithms, libraries and their performance
Interlude: Profiling on Linux

Expression template generalities

Lazy code generation —what it is & how it works
LzCG example

Summary

«O>r «Fr <«

it
v
N
it
v
[y

DA

About myself: ALMA telescope e

computation in C++
Largest ground-based astronomy project in the world

Introduction

Currently being commissioned at altitude of 5000 m in
Chile. Will have 66 telescopes separated by up to 15kms
and observed at wavelength between 7 and 0.35 mm.

About myself: Green Bank Telescope

Largest steerable telescope in the world

Main reflector is 100x110 m in size, total height 160 m.

Entire structure is accurate to 0.25 mm.

] = =

Numerical
computation in C++

Introduction

Numerical
algorithms,
libraries and their
performance

Interlude: Profiling
on Linux

Expression
template
generalities

Lazy code
generation — what
it is & how it works
LzCG example

Summary

About myself: Thermal radio emission from computation n Ges
Messier 66

Introduction

» Colour scale is
emission from dust at
0.024 mm wavelegnth

» Contours represent
emission at 3mm from
hot electron gas

» Both appear to be
powered by recent star
formation

General Interests SN,

Introduction

» Model optimisation and statistical inference
(maximum-likelihood, Markov Chain Monte Carlo,
Nested Sampling techniques)

» Pricing and risk-management of derivative contracts
» Remote sensing of Earth’s atmosphere
» Radiative transfer and other physical simulations

= All very numerically intensive applications...

Numerical

Aperture synthesis radio-astronomy computation in G-+

Introduction

» Revolutionised the radio view of the universe — Nobel
prize in 1972
» Development of the technique closely tied to
computers:
» Lots of Fourier Transforms
» Large quantities of data to be binned, inspected,
discarded if necessary
» Instruments inherently unstable so calibration is
critical
» Atacama Large Millimetre Array: eventually 66
antennas, ~ 20 Mb/s average output data rate:
» Computational issues inconvenient, reduce scientist
productivity
» Square Kilometre Array (SKA): 1000s antennas, wide
field of view, ~ few Gb/s average output data rate:
» Computational issues limiting factor in scientific output

Risk management of ‘derivative’ contracts in ..oimarnc..
finance

Requirements in just one product line (e.g., credit derivatives)

Introduction

Typically calculations involve either: solving PDEs using
finite differences; or computing FFTs; or Monte-Carlo (MC)
simulations.

» 2000 nodes x 1kW /node + 50% aircon cost =
3MW

» 3MW x 10p/s x 8500 hr/yr =
~ 2.5 x 108 GBP/yr!
» Additional costs « number of nodes:
» Installation, maintenance, software licenses (even
Excel sometimes!)
» Floor-space (in expensive buildings)
» Standby backup power generation costs

Numerical performance compuaion n s
(Why) does it matter?

Introduction

Easily parallelisable Difficult to parallelise
» Cost » Feasibility
» Heat, power, floor » Latency
space » User patience

» Environmental impact
» Time to scale-up
» Access to capital

Parallelisation is usually the most important aspect of
high-performance numerical computing

» Not directly considering it in this talk although much of
the material is relevant

Small problems = simple solutions I
Many practical scientific and industrial problems can be accelerated a
simple way

Introduction

Listing 1: By-hand coding + SIMD intrinsics

void add2Vect(const std::vector<double> &v1,
const std::vector<double> &v2,
std :: vector<double> &res) {
typedef double v2df __attribute_- ((mode(V2DF)));
v2df = dest=(v2df x)&(xres.begin());
const size_t n=vl.size();
const v2df xsrc1=(const v2df *)&v1[0];
const v2df xsrc2=(const v2df *)&v2[0];
if (n%2==0)

for(size_-t i=0; i<n/2; i++)

dest[i]=--builtin_.ia32_addpd (srci[i],src2[i]);

else
for(size-t i=0; i<n; ++i)
dest[i]=src1[i]+src2[i];

}
}

Simple problems are common in real life but not really the
subject of this talk!

Hand coding unsuitable for large systems compiation n G-+

Introduction

Correctness

Maintainability, readability, portability

Algorithms need adjustment over time

Experiment with different implementations of
algorithms

Approximations: how much precision, what accuracy
is necessary?

vV v vy

v

= These can be difficult to achieve with complex
hand-crafted code!

1 N ical
Warn I ng ! compul‘;;ﬁ)r::; C++
“Don’t try this at home” — try existing libraries first

Introduction

Writing numerical libraries is difficult and error prone —
always carefully consider alternatives!

» Can you use standard existing libraries (“C” or “C++")

» Are you writing a general purpose library or an
application?

» Can you, in advance, identify a subset of algorithm

which is likely to consume most time but can present
a clean, data-only, interface?

Introduction

Numerical algorithms, libraries and their performance

Interlude: Profiling on Linux

Lazy code
i iti tion — what
Expression template generalities generation — what
LzCG example
Lazy code generation — what it is & how it works Summary

LzCG example

Summary

«O>r «Fr <«

it
v
N
it
v
[y

DA

Requirements for good numerical I
performance

Numerical
Maximise parallelism Tovaries and ther
» Use all of the nodes/processors/cores/execution units perrmance
» Use Single-Instruction-Multiple-Data (SIMD)
Minimise memory access
» Keep close data to be processed together
» Use algorithms that process small chunks of input
data at a time
» Avoid temporaries
Minimise ‘branching’
» Keep the pipeline and speculative fetches good
» But, need enough code at hand to execute
Minimise quantity of transcendental calculations
» Includes division in this set
» Reducing precision or accuracy makes these faster

v

v

v

v

Optimisation Cha”enges I com;')\lul‘;;grﬁ: C++

» Want: to describe the algorithm in simple, readable,

Numerical
re-usable way algorithms,
libraries and their
// This : performance
R=A+B+C+D+E;
//Not this :

addFiveVect_-Double_Double_Double_Double_Double (A, B, C, D, E, R);

» Rules for transforming such description to executable
code need to be complex to be efficient
» Simple application of rules applying to C++ objects:
» Arguments are ‘evaluated’ before being passed to
functions
» Operators take two arguments at most
» Creation of temporaries
» lteration is interpreted literally as ordered repetition of
same segment of code
Fundamentally: One step of the algorithm at a time
Definitely not suitable for fast code!

Optimisation Cha”enges ” comp')\lul‘;;gacﬁ:0++

Numerical

» Programs may be compiled on one hardware setup RIoCHrS:

libraries and their

but run on many different hardware setups palfomiEnGe

» Might need (or want) to adjust rules for generation of
implementations after the compilation of the main
program

» Speed of execution of particular implementation of
algorithm can be difficult to predict

» Depends on precise model of the processor: clock
speed, number of floating point execution cores,
hyper-threading, branch-prediction, pipeline designs,
microcode implementations of complex instructions

» Sizes of the various levels of data and code caches,
main memory bus speed

Example: row vs column matrix access I

Numerical
algorithms,
libraries and their
performance

Listing 2: Sum by iterating through columns first

u:: matrix<double> A(nrow, ncol) ;

// initialise ...

double res;

for(size_t k=0; k<repeat; ++k)
for(size_t i=0; i<nrow; ++i)

for(size_t j=0; j<ncol; ++j)
res+=A(i,j);
return res;

Example: row vs column matrix access I

Numerical
algorithms,
libraries and their
performance

Listing 3: Sum by iterating through rows first

u:: matrix<double> A(nrow, ncol);
// initialise ...
double res;
for(size_t k=0; k<repeat; ++k)
for(size_t j=0; j<ncol; ++j) // note swap
for(size_t i=0; i<nrow; ++i)// note swap
res+=A(i,j);
return res;

Example: row vs column matrix access I

Rows Columns Time for col-first Time for row-first

Numerical

(seconds) (seconds) oorme
1 000000 1 0 41 6 452 performance
100000 100 415 9.54
10000 1000 4.04 5.52
1000 10000 4.02 5.41
100 100000 4.00 4.56
10 1000000 3.96 4.04

Note

» Compiled using gcc without optimisation
» Run on my laptop
» = lllustration only!

Techniques used for advanced numerical
libraries

>
>
>
>
>
>

Expression templates and lazy code generation can adapt

Optimising compilers

Custom compilers for standard languages

Code generation using custom languages/frameworks
Run-time selection according to detected hardware
Run-time profiling of multiple/many algorithms
Run-time generation of machine code

all of these to standard C++.

Numerical
computation in C++

Numerical
algorithms,
libraries and their
performance

A quick case study: FFTW I

http://www.fftw.org

Numerical

algorithms,
Revolutionary at the time: Ioraries and el
» Building blocks (“codelets”) of algorithms generated at
compile-time:

OCAML — C — machine code

» Run-time selection of best combination of
building-blocks

» Memory-layout, cache sizes, relative speed of
memory
» Code selection can be saved

» SIMD+ (p)threads + MPI parallelism

» Presents trivial C-language & Fortran-language
interfaces

http://www.fftw.org

Some subtleties

» The order of floating point operations usually matters
even when operations on real numbers would not:

14+ (-14+107"% £ (1 —-1)+1071° (1)

» “Standard” x86 floating point uses 80-bit internal
precision! (SIMD instructions do not)

» Non-normal (NaN, Inf, de-normalised) floating point
number badly affect performance:

0o+ 1=00 (slowly!) (2)

» Transcendentals can be approximated to less than full
precision

= Ensuring “bit-equivalent” results is difficult and
expensive

Numerical
computation in C++

Numerical
algorithms,
libraries and their
performance

Introduction

Numerical algorithms, libraries and their performance
Interlude: Profiling on Linux
Expression template generalities

Lazy code generation — what it is & how it works

Summary

LzCG example

Summary

«O0>» «Fr» «=)Hr «E)»

DA

How to identify bottlenecks compuaion n s

» Run a tick counting profiler:
http://oprofile.sourceforge.net/ Tricriludtes Fisfing
» Get a stochastic measurement of where the CPU on e
spends most of its time without modifying the code!
» Run a call-graph profiler: http://valgrind.org/
» Shows how the CPU-intensive parts of the code fit
into the big picture of the application
» Compile to assembly only (“gcc -S”) and look at the
code!
» Allows identifications of in-efficiencies in the produced
code and gives hints for optimisations

http://oprofile.sourceforge.net/
http://valgrind.org/

Introduction

Numerical algorithms, libraries and their performance
Interlude: Profiling on Linux

Expression template generalities

example

Lazy code generation — what it is & how it works e

LzCG example

Summary

«O0>» «Fr» «=)Hr «E)»

DA

What is an expression template? compuaion n s

» Templated

» Type
» Where the type itself
encodes an operation, Expression
expression or genoraties
Expression B algorithm
template » Passed between
functions as instantiated
objects (usually with
data as references)

» Implemented through
(partial) specialisations

Numerical

Expression template (minimal) example SN,

Listing 4: Adding vectors

// Some vectors to use in the example
std ::vector<double> a(10, 1.0), b(10, 2.0); Expresson

template
generalities

// Addition the old way (see next slide)
double res=(a+b+a+b)[3];

1. A temporary is created
2. All members of the result vector are computed
3. The temporary is iterated three times over

Helper function Numerical

computation in C++

Listing 5: Simple add operator for std: : vector

template< class T>
std :: vector<T>
operator+(const std::vector<T> &a,
const std::vector<T> &b) SpiaEEEn

template
{ generalities

std ::vector<T> res(a.size ());

for(size_t i=0; i<a.size(); ++i)
res[i]=ali]l+b[i];

return res;

1. Considers two vectors at a time

2. lterates through the whole vector and computes the
entire result

Expression template (minimal) example computation in G-+

Listing 6: Expression template class
template<class E1, class E2,

class op=valueop>
struct binop

{ Expression

const E1 &left; const E2 &right; template

generalities

binop (const E1 &left , const E2 &right ,
op opval):
left (left), right(right) {};
binop (const E1 &val);
¥

1. The sub-expression are referenced in left, right
2. The operation is contained in type of op
» valueop, addop are simple tag structs

Expression template (minimal) example

Listing 7: Creation of compound expression

template<class E1, class E2>

binop<E1, E2, addop>

operator+ (const E1 &left ,
const E2 &right)

{
return binop<E1, E2, addop>(left ,
right ,
addop ());
}

1. E1, E2 are ‘free’ template parameters — types of

sub-expression is encoded in result

2. addop is the type of third template parameter —
encodes addition of sub-expressions

Numerical
computation in C++

Expression
template
generalities

Expression template (minimal) example computation in G-+

Listing 8: Templated evaluation operation —
Xpression

/// Evaluate the i—th element of it
/// an expression
template<class E1, class E2, class op>
double eval(const binop<E1, E2, op> &o,
size_t i);

Expression template (minimal) example
Partial specialisation for add operation

Listing 9: Implementation of sum operation using partial
specialisation

template<class E1, class E2>

double eval(const binop<E1, E2, addop> &o,
size_t i)

{

b

1. Specialised on addop as third temp-par

2. Recursively evaluate and add using standard
operator+

return eval(o.left, i)+eval(o.right, i);

Numerical
computation in C++

Expression
template
generalities

Expression template (minimal) example
Partial specialisation for value operation

Listing 10: Partial specialisation for value types

template<class T>

double eval(const binop<T, T, valueop> &o,
size_t i)

{

}s

1. Specialised on valueop as third template-parameter
2. Simply returns the value of reference vector at i

return o.left[i];

Numerical
computation in C++

Expression
template
generalities

Expression template (minimal) example computation in G-+

Listing 11: In use

std :: vector<double> a(10, 1.0), R
b(1 0 ; 2 B 0) , ten?platlgtl
generalities

binop<> ba(a), bb(b);
double res=eval (ba+bb+ba+bb, 3);

1. Does not create a temporary vector
2. Evaluates only the third element of the result

Numerical

A |00k at the typeS computation in C++

Listing 12:

000000000040114a W double
00000000004014a7 W double
0000000000401624 W double
0000000000401473 W double

Expression
Signatures as seen by nm -C template

generalities
eval<binop<binop<binop<std :: vector<double, std::allocator<double> >, st
eval<binop<binop<std ::vector<double, std::allocator<double>/ > “std::vec
eval<binop<std :: vector<double, std::allocator<double> >, Ystd'r'vector<do
eval<std ::vector<double,std:: allocator<double> >, std::vector<double s

A look at the types

Listing 13: Output of nm —C wrapped properly

double eval<binop<binop<binop<std ::vector<double,
std :: vector<double

valueop >,

binop<std :: vector<double,
std :: vector<double,

valueop >,
addop >,
binop<std :: vector<double,
std ::vector<double,
valueop >,
addop>,

std :
std :

std :: allocator<double> >,
std :: allocator<double> >,

std :: allocator<double> >,
std :: allocator<double> >,

:allocator<double> >,
:allocator<double> >,

binop<std :: vector<double, std::allocator<double> >,
std :: vector<double, std::allocator<double> >,

valueop> >(
binop<binop<binop<binop<std :: vector<double,

std :: vector<double,
valueop >,

binop<std :: vector<double,
std :: vector<double,
valueop >,

addop>,

std::
std ::

std ::
std ::

allocator<double> >,
allocator<double> >,

allocator<double> >,
allocator<double> >,

binop<std :: vector<double, std::allocator<double> >,
std :: vector<double, std::allocator<double> >,

valueop >,
addop >,

binop<std :: vector<double, std::allocator<double> >,
std :: vector<double, std::allocator<double> >,

valueop >,
addop> const&,
unsigned long)

Numerical
computation in C++

Expression
template
generalities

<O T o«

azy code
generation — what
it is & how it works

LzCG example

Summary

Lazy evaluation computation in G-+
Not the same as lazy code generation...

In summary:
1. Operations (+function calls) return ‘expressions’ not
results
2. The order and implementation of operations in
expression can be modified (at compile-time) PR
3. Results are only evaluated at a boundary, e.g., when ~ ‘reae
assigning to plain-old-data
4. If the result is never required, it is never computed
Doing this properly is very elegant but things get
complicated — see the Haskel programming language
Things to keep in mind:
1. Side-effects are ill-defined — stick to ‘functional’
programming
» Assigning to an already initialised variable is not
functional programming!
2. Implemented with expression templates, size of types
grows very quickly

Libraries

> Eigen http://eigen.tuxfamily.org (LGPL)
Array Ops, Basic + Advanced Linear Algebra,
Geometry

» Armadillo nttp://arma.sourceforge.net/ (LGPL)
Array Ops, Basic + Advanced Linear Algebra,
Geometry

» Boost.uBLAS nttp://www.boost.org (Boost License)
Basic Linear Algebra

» NT? http://nt2.sourceforge.net/ (LGPL)

» Blitz++ http://www.oonumerics.org/blitz/
(GPL+artistic)
This was one of the first libraries to use expression
templates

Numerical
computation in C++

Expression
template
generalities

http://eigen.tuxfamily.org
http://arma.sourceforge.net/
http://www.boost.org
http://nt2.sourceforge.net/
http://www.oonumerics.org/blitz/

Introduction

Numerical algorithms, libraries and their performance
Interlude: Profiling on Linux

Expression template generalities

LzCG example
Lazy code generation —what it is & how it works o

LzCG example

Summary

«O0>» «Fr» «=)Hr «E)»

DA

Introduction

‘Standard’ expression templates

1. Types convey information about algorithm that
functions implement

2. These types are interpreted at compile-time and
corresponding code generated

Lazy code generation

1. The types are recorded in object code too, so the
algorithm implemented by symbols is retained

2. Generate new implementations, post-compilation-time

= Introduces new flexibility and modularity in code
generation process

Numerical
computation in C++

Lazy code
generation — what
it is & how it works

Level 1 BLAS

SomtUTIE AIC
SomROITIE SA0THGC

L
x
x
I
x
x
I
X
¥

FRCTION Taatax(¥, X

Level 2 BLAS

options ™

aamn s,

e Taass,

Sy C o,

Sy (oD,

Level 3 BLAS

epricas
atemn TaANSA, TRANSS
st (s1E, wPLD,
= (STE, UPLD,
ovRE S
eyt ey
ssvazE(L,
smazK(L,
T C STOE, URLD,
sxasu C SioE, v,

mex, ¥,
mex,

e, v,
ex)
T

o,
ey,

v,
or)

oy)
v)

L 4, 1k,
.

. e,

)
. mor, 4, 1)
oY, 4F)

o,
ey

)
Puan)

euan)

v
¥
¥
v

Gonaate plans s
rate oo plane soation

Avply hns rovon

Apply modified plane rot

2

o | relell 4 im(o)

s L el
ax(re(z)| + 1

i By ATk B e oA Gy A=

b ade t By - adTad yy - aA¥o s A mxn

AT 4,
AcanT A4 mxn
A ay® A Aomxn
A amria

A e

Ao e 15
T 1

NiamT 40

A any +aus 44
Aoy’ 4oy + 4

€ A)on(B) 4 5, X) = X, XT, X7, C o x
€ adB+3C,CaBA+3C,C mxnA=AT

€ aAB +3C.C +aBA+3C.C

€ aAAT §40,C - adT A+ 40, C

€ A" 4 4C,C o Al A 4

€GBT L ABAT S 50,0 ¢ aATB L AALHOC nxn
Ccadut 4+ aHAT 4 C.C - adl +5UTA4IOC nxn
B aop(A)B, B < aBop(A).0p(A) “mxn

o o 2

protises
5.0

PoEPPEUTUN

COTONNNNNND

c.
c
c
c.
N
5
s
s

Numerical
computation in C++

Introduction

Numerical
algorithms,
libraries and their
performance

Interlude: Profiling
on Linux

Expression
template
generalities

Lazy code
generation — what
it is & how it works
LzCG example

Summary

it
N)
»
i)

BLAS — structure of function of names

Operation:
DOT scalar product
AXPY vector sum
MV matrix-vector product

SV matrix-vector solve
MM matrix-matrix product
SM matrix-matrix solve

Numerical type:
S single real
D double real
C single complex
Z double complex

Matrix type:
GE general
GB general band
SY symmetric
SB symmetric band
SP symmetric packed
HE hermitian
HB hermitian band
HP hermitian packed
TR triangular
TB triangular band
TP triangular packed

Numerical
computation in C++

Lazy code
generation — what
it is & how it works

C++ type is encoded in the function (symbol) ...,
name

Listing 14: Back to basic expression template example

double eval<binop<binop<binop<std::vector<double, std::allocator<double> >,
std :: vector<double, std::allocator<double> >,
valueop >,
binop<std :: vector<double, std::allocator<double> >,
std :: vector<double, std::allocator<double> >,
valueop >,
addop>,
binop<std :: vector<double, std::allocator<double> >,
std ::vector<double, std::allocator<double> >,

valueop >, Lazy code
addop>, generation — what
binop<std :: vector<double, std::allocator<double> >, it is & how it works
std :: vector<double, std::allocator<double> >,
valueop> >(

binop<binop<binop<binop<std :: vector<double, std::allocator<double> >,
std ::vector<double, std::allocator<double> >,
valueop >,
binop<std :: vector<double, std::allocator<double> >,
std :: vector<double, std::allocator<double> >,
valueop >,
addop>,
binop<std ::vector<double, std::allocator<double> >,
std :: vector<double, std::allocator<double> >,
valueop >,
addop >,
binop<std :: vector<double, std::allocator<double> >,
std :: vector<double, std::allocator<double> >,
valueop >,
addop> const&.

C++ type is encoded in the function (symbol) ...,
name

Listing 15: Back to basic expression template example (raw
nm)
000000000040114a W _Z4evall5binoplS0.1S0_IStévectorldSaldEES3._\
7valueopES5_5addopES5.S6_ES5_EdRKSO0._IT_-T0-S6-Em

Lazy code

» The function/symbol name specifies exactly the generation — what
algorithm that it should apply to its data 18 & howitworks

» This information is available post-compile-time (as
simply as using nm)

» Implementation can be generated post-compilation
and used in program simply by linking it (weak
symbols make this trivial)

Alternative view

What we get:

Expression templates allow export of a subset of the

program parse tree outside the compiler environment.

What would be the alternative?

Parsing the C++ source code = writing new compiler

Numerical
computation in C++

Lazy code
generation — what
it is & how it works

Potential advantages of LzCG compuaion n s

General:

1. A very simple, clean, efficient mechanism for
separating specification of what needs to be from how
its done
2. A mechanism introducing an embedded language in
C++ that can be implemented outside traditional C++
compilation scheme .
Specific: s & how fworks
1. Can try multiple algorithms and select the
experimentally most efficient
2. Can detect hardware configuration and generate
efficient code without access to source code

3. Can use custom and third-party code generators
(GPU compilers, cluster compute tools, or Ocaml +
C-compiler!)

Introduction

Numerical algorithms, libraries and their performance
Interlude: Profiling on Linux

Expression template generalities

Lazy code generation —what it is & how it works
LzCG example

Summary

«O>» «Fr = <

it
-
[y

DA

Example introduction — Fast Fourier I
Transforms

» Optimum FFT algorithm depends on array length,
cache sizes, processor architecture, etc., etc

» Normally selected by benchmarking at run-time

» Can we do better if we know array size at LzCG example
compile-time?

Code Numerical

computation in C++

Listing 16: Call to compute the forward FFT

boost:: array<double, 10> inp;
boost ::array<double, 10> out;

FFTForward(inp, out);

1. Array sizes are known at compile-time

2. Can select optimum algorithm as soon as we know
what machine we run on

» This may be after compile-time but must be before
run-time
3. Selection before run-time:
3.1 Removes potentially lengthy run-time algorithm
selection

3.2 Makes the program performance more predictable
3.3 Reduces code size

3.4 Allow selection from wider range of algorithms

LzCG example

Numerical
COde computation in C++

Listing 17: Call to FFTW the old-fashioned way

fftw_plan p=

fftw_plan_dft_1d (5,
(fftw_complex*)(&in[0]),
(fftw_complex «)(&out[0]) ,
FFTW_FORWARD,
FFTW_ESTIMATE) ;

fftw_execute (p); LZCG example

1. First call to create the plan can be time consuming
(e.g., ~ 1second!)

2. Linking the entire library — ‘codelets’ + the algorithm
selection code

Numerical
COde computation in C++

Listing 18: Declaration of the FFTForward template

template <class T, std::size_t N>
void FFTForward(const boost::array<T, N> &in,
boost::array<T, N> &out);

Listing 19: Call to compute the forward FFT

boost ::array<double, 10> inp;
boost ::array<double, 10> out;

LzCG example

FFTForward(inp, out);

Numerical
COde computation in C++

Listing 20: Signature of the call to FFTForward (nm -C)

00000000004005e3 W void
FFTForward<double, 10ul >(boost::array<double, 10ul> const&,
boost ::array<double, 10ul>8&)

This is all the information we need to select an algorithm:
1. Parse signatures to identify all instances of
FFTForward
2. Machine generate new C++ code with specialisation
for each FFTForward instance but with optimum
algorithm pre-selected
3. Compile and link these with original code

Note:

LzCG example

» Do not need access to the application source code —
just the object file

» Can do the code generation on a different computer,
using different tools, compilers & languages

Listing 21: Parse symbol table

1. Simple regular expression on output of the nm -C
2. The array length is extracted from the signature

Numerical
computation in C++

Introduction

Numerical
algorithms,
libraries and their
performance

Interlude: Profiling
on Linux

Expression
template
generalities

Lazy code
generation — what
it is & how it works
LzCG example

Summary

Numerical
computation in C++

Introduction

Listing 22: Algorithm selection Numerical
algorithms,
libraries and their
performance

Interlude: Profiling
on Linux

Expression
template
generalities

Lazy code
generation — what
it is & how it works

LzCG example

Summary

Trivial C program that calls FFTW with right array size
Execute this at lazy-code-generation-time
Print the selected best algorithm

W

Hardcode this algorithm selection in the specialised
function

u]
o)
1}
n
it

DA

Listing 23: Emit a specialised function for this array size

1. The plan is stored as string literal within each
specialised function

Numerical
computation in C++

Introduction

Numerical
algorithms,
libraries and their
performance

Interlude: Profiling
on Linux

Expression
template
generalities

Lazy code
generation — what
it is & how it works
LzCG example

Summary

What have we achieved? SN,

1. Optimum, pre-selected FFTW transform for each
array of known size at compile-time — efficiency

2. Could switch to multi-core/GPU/etc without access to
source code — modularity
Implementation shortcomings (this is a quick examplel!):
» The entire FFTW is linked-in — not just the specific LZCG example
algorithms

» Loading plans at run-time could be significant for
small transforms

Introduction

Numerical algorithms, libraries and their performance
Interlude: Profiling on Linux

Expression template generalities

Lazy code generation —what it is & how it works
LzCG example

Summary

«O>» «Fr = <

it
v
[y

ae

Simple C++ code is not numerically efficient .. himas..

1. Function arguments evaluated promptly:

vector<double> myVect(10000000, 3.0);
takeOne (1.0/myVect, 5);

2. Only binary operators

vector<double> myVect(10000000, 3.0);
vector<double> myVect2=myVect+myVect+myVect;

Summary

3. Optimum algorithm sometimes can not be selected at
compile-time

Numerical

Expression templates resolve many of these ...nennc..
issues

1. Expressions create objects with type that specifies the
algorithm to be carried out

2. This type is interpreted at compile-time (through
partial specialisation) to generate an efficient
algorithm implementation of the whole expression

= Blitz++, Boost::UBLAS, Armadillo, Eigen, NT?

Summary

Lazy code generation I

1. The type of expression templates is available in object
code

00000000004005e3 W void

FFTForward<double, 10ul >(boost::array<double, 10ul> const&,
boost :: array<double, 10ul>&,
boost :: array<double, 10ul>8&)

2. It can be interpreted post-compilation-time to
generate code for the implementation
» Try different algorithms
» Delay algorithm selection for final hardware Uy
» Increased modularisation

3. The original implementation can be empty or a
fall-back

When to use Lazy code generation compuaion n s

1. Need to do empirical selection of optimum algorithms
2. Want to do code generation using non-C++ compiler
tools:
» OcamL — C+intrinsics — machine code
» GPU compiler?
3. Need to re-establish clean separation between
application and library
» Update implementations without access to original SRy
source code
» Licensing concerns, proprietary libraries

» See http://www.bnikolic.co.uk/ and

http://www.mrao.cam.ac.uk/~bn204/ and for

more information

Numerical
computation in C++

Introduction

Numerical
algorithms,
libraries and their
performance

Interlude: Profiling
on Linux

Expression
template
generalities

Lazy code
generation — what
it is & how it works

LzCG example

Summary

http://www.bnikolic.co.uk/
http://www.mrao.cam.ac.uk/~bn204/

	Introduction
	Numerical algorithms, libraries and their performance
	Interlude: Profiling on Linux
	Expression template generalities
	Lazy code generation -- what it is & how it works
	LzCG example
	Summary

